160 W 800 fs Laser System without CPA for High Speed Surface Texturing

Vesna Markovic, Andreas Rohrbacher, Peter Hofmann, Wolfgang Pallmann, Simonette Pierrot, Hubert Ammann, Bojan Resan

JDSU Ultrafast Lasers AG, Schlieren/Zurich, Switzerland

CLEO Europe, 25.06.2015

Introduction

- **Ultrashort laser pulses** are a proven tool for high quality laser micromachining
- Demand for **high throughput** is a key factor for large scale industrial applications
Introduction

- **Ultrashort laser pulses** are a proven tool for high quality laser micromachining.
- Demand for **high throughput** is a key factor for large scale industrial applications:
 - **High repetition rate** lasers operating at > 1 MHz deliver > 1 million pulses per second.
 - Minimum surface roughness is achieved with a spatial overlap of two consecutive pulses of 50-75% \([1]\) → **high marking speeds** (several 100 m/s) are needed
 - Provided by novel **polygon line scanners**
 - For a given material, there is an **optimum fluence** (**pulse energy**) at which maximum specific removal rate (removal rate per average power) is achieved \([2,3]\)
 - \(P_{\text{average}} = E_{\text{pulse}} \times f_{\text{rep}}\) → **to work at high rep rates high average power is needed**
 - **Demand for laser systems with high average power and high repetition rate**

2. Raciukaitis, G. et al. JLMN 4, 186, 2009
Ultrashort laser pulses are a proven tool for high quality laser micromachining. Demand for high throughput is a key factor for large scale industrial applications.

- High repetition rate lasers operating at > 1 MHz deliver > 1 million pulses per second.
- Minimum surface roughness is achieved with a spatial overlap of two consecutive pulses of 50-75% \[1\] → high marking speeds (several 100 m/s) are needed.
 - Provided by novel polygon line scanners.
- For a given material, there is an optimum fluence (pulse energy) at which maximum specific removal rate (removal rate per average power) is achieved \[2,3\].
- \[P_{average} = E_{pulse} \cdot f_{rep}\] → to work at high rep rates high average power is needed.
- Demand for laser systems with high average power and high repetition rate.

- Collaboration between the end-users, research labs and laser manufacturers (21 partners, 8 countries).
- Laser system for high speed surface texturing
 - high rep rate > 3 MHz,
 - high average power ~ 100 W,
 - ultrashort pulses ≤ 500 fs,
 - compact foot print,
 - low cost,
 - robust system,
 -...

APPOLO - Validation of Process Feasibility and Adaptation of Innovative Laser Technology and Equipment

Gediminas Raciukaitis, today, 11:20 h
Forum A2 - Optical Metrology and Imaging

2. Raciukaitis, G. et al. JLMN 4, 186, 2009
Laser System Design: Oscillator

- **MOPA**: YBIX oscillator + 2-stage SCF amplifier
Laser System Design: Oscillator

- **MOPA**: YBIX oscillator + 2-stage SCF amplifier

- **Why YBIX?**
 - Robust SESAM® mode-locking
 - High peak power
 - Ultrashort pulses, 200 fs
Laser System Design: Oscillator

- **MOPA**: YBIX oscillator + 2-stage SCF amplifier

- **Why YBIX?**
 - Robust SESAM® mode-locking
 - High peak power
 - Ultrashort pulses, 200 fs

- **Customized YBIX oscillator parameters:**
 - 2.8 W, 83.4 MHz, 1030.3 nm, FWHM = 2.4 nm, < 400 fs, M2<1.1

Autocorrelation trace of 380 fs at 2.8 W.

Beam profile measured at 200 mm distance from the housing at 2.8 W.
Laser System Design: Amplifier

- **Why single crystal fiber (SCF)?**
 - A short rod fiber or a thin and long crystal
 - Direct amplification of femtosecond pulses avoiding the standard CPA technique
 - Designed for a pump light guidance and a free-space propagation of a laser signal

- **SCF**: 1 mm diameter Yb:YAG rod

picture credits: property of Fibercryx SAS
- YBIX is directly seeded into SCF-amplifier, **no CPA**
Laser System Design

- YBIX is directly seeded into SCF-amplifier, **no CPA**
- **1st stage amplifier:**
 - Double-pass signal configuration using the retro-reflective mirror and Faraday rotator
 - **High brightness 105-µm fiber-coupled pump diode, 140 W, 940 nm**
Laser System Design

- YBIX is directly seeded into SCF-amplifier, **no CPA**

- **1\(^{st}\) stage amplifier:**
 - Double-pass signal configuration using the retro-reflective mirror and Faraday rotator
 - **High brightness 105-µm fiber-coupled pump diode, 140 W, 940 nm**

- **2\(^{nd}\) stage amplifier:**
 - Single-pass signal configuration
 - **Bidirectional pumping:** 105-µm fiber-coupled diode, 140 W, 940 nm and 200-µm fiber-coupled diode, 200 W, 940 nm
Gain Curves

- **1st stage amplifier:**
 - Small signal gain: >32 dB
 - Highest small signal gain with SCF so far
 - Maximum output power: 42 W
 - Extraction efficiency: 28 %
Gain Curves

- **1st stage amplifier:**
 - Small signal gain: \(>32\, \text{dB}\)
 - Highest small signal gain with SCF so far
 - Maximum output power: 42 W
 - Extraction efficiency: 28 %

- **2nd stage amplifier:**
 - Maximum output power: 162 W
 - Highest average power of femtosecond pulses achieved with SCF so far
 - Extraction efficiency: 42 %
 - Highest value achieved with SCF so far
Beam quality

Beam quality factor, M^2

<table>
<thead>
<tr>
<th>Oscillator</th>
<th>@ 102 W output</th>
<th>@ 124 W output</th>
<th>@ 162 W output</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.1, 1.1</td>
<td>1.3, 1.3</td>
<td>1.4, 1.5</td>
<td>1.9, 1.9</td>
</tr>
</tbody>
</table>

P = 102 W

$M^2_x = 1.3$, $M^2_y = 1.3$
Beam quality

<table>
<thead>
<tr>
<th>Oscillator</th>
<th>@ 102 W output</th>
<th>@ 124 W output</th>
<th>@ 162 W output</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.1, 1.1</td>
<td>1.3, 1.3</td>
<td>1.4, 1.5</td>
<td>1.9, 1.9</td>
</tr>
</tbody>
</table>

![Beam quality factor, M^2](image)

\[
P = 124 \text{ W} \\
M^2_{x} = 1.4, \quad M^2_{y} = 1.5
\]
Beam quality

Beam quality factor, M^2

<table>
<thead>
<tr>
<th>Oscillator</th>
<th>@ 102 W output</th>
<th>@ 124 W output</th>
<th>@ 162 W output</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.1, 1.1</td>
<td>1.3, 1.3</td>
<td>1.4, 1.5</td>
<td>1.9, 1.9</td>
</tr>
</tbody>
</table>

\[
P = 162 \text{ W} \\
M^2_x = 1.9, \ M^2_y = 1.9
\]
Spectrum and Pulse Duration

Optical spectrum centered at 1030.5 nm with 1.7 nm full width half-maximum at maximum output power of 160 W.

Autocorrelation trace of 800 fs at maximum output power of 160 W.
Summary and Outlook

- Compact laser system that delivers >100 W femtosecond pulses with only 2 amplifier stages

- High brightness pumping results in the highest small signal gain (close to 33 dB) achieved so far

- We implemented bidirectional pumping scheme of SCF amplifier for the first time, and this allowed us to reach 160 W with 2 amplifier stages

- Highest average power of femtosecond pulses achieved with SCF
Summary and Outlook

- **Compact laser system that delivers >100 W femtosecond pulses** with only 2 amplifier stages

- High brightness pumping results in the **highest small signal gain (close to 33 dB)** achieved so far

- We implemented **bidirectional pumping scheme of SCF amplifier** for the first time, and this allowed us to reach 160 W with 2 amplifier stages

- **Highest average power of femtosecond pulses achieved with SCF**

- Working on **beam quality improvement of 160 W beam**
Acknowledgment

This work was partially financially supported by EU FP7 project Appolo, grant agreement number 609355.
Summary and Outlook

- Compact laser system that delivers >100 W femtosecond pulses with only 2 amplifier stages
- High brightness pumping results in the highest small signal gain (close to 33 dB) achieved so far
- We implemented bidirectional pumping scheme of SCF amplifier for the first time, and this allowed us to reach 160 W with 2 amplifier stages
- Highest average power of femtosecond pulses achieved with SCF
- Working on beam quality improvement of 160 W beam